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Summary. A simple viscoelastic film model is presented, 
which predicts a breakdown electric potential having a 
dependence on the electric pulse length which approxi- 
mates the available experimental data for the electric 
breakdown of lipid bilayers and cell membranes (summa- 
rized in the reviews of U. Zimmermann and J. Vienken, 
1982, J. Membrane Biol. 67:165 and U. Zimmermann, 
1982, Biochim. Biophys. Acta 694"227). The basic result is 
a formula for the time z of membrane breakdown (up to 
the formation of pores): z=C~(l~/G)/(e~e2oU4/24crGh 3 
+ T2/a Gh-1) ,  where c~ is a proportionality coefficient ap- 
proximately equal to ln(h/2~o), h being the membrane 
thickness and ~o the amplitude of the initial membrane 
surface shape fluctuation (~ is usually of the order of uni- 
ty), g represents the membrane shear viscosity, G the 
membranes shear elasticity modules, %, the membrane re- 
lative permittivity, eo= 8.85 x 10-12F/m, U the electric po- 
tential across the membrane, a the membrane surface ten- 
sion and T the membrane tension. This formula predicts a 

Uc=(24aGh /e~eo) ~ (for z=oc  and T critical potential Uc; 3 2 2 -~ 
=0). It is proposed that the time course of the electric 
field-induced membrane breakdown can be divided into 
three stages: (i) growth of the membrane surface fluc- 
tuations, (ii) molecular rearrangements leading to mem- 
brane discontinuities, and (iii) expansion of the pores, re- 
sulting in the mechanical breakdown of the membrane. 

Key Words membrane breakdown �9 viscoelastic films . 
membrane potential 

Introduction 

Electrical breakdown of membranes is termed 
the phenomena of sharply increased electrical 
conductivity of membranes (more than 8 orders 
of magnitude) under the application of electri- 
cal pulses of high intensity, which does not nec- 
essarily lead to an irreversible mechanical 
breakdown of the membrane (Zimmermann 
et al., 1981, t982}. The electrical breakdown of 
membranes occurs at different electrical poten- 
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tials depending on the electrical pulse duration. 
The potential, above which the membrane 
undergoes an electrical breakdown, is called the 
critical potential (Zimmermann, Scheurich, Pil- 
wat & Benz, 1981; Zimmermann & Vienken, 
1982). The membranes usually break irrevers- 
ibly at long pulse duration (Abidor et al., 
1979; Zimmermann & Vienken, 1982). The elec- 
tro-mechanical model of electric breakdown 
considers the membrane as an elastic body. Ac- 
cordingly, the conditions for membrane rupture 
are derived from the balance of electrostatic 
and elastic forces (Crowley, 1973; Zimmermann, 
Pilwat & Riemann, 1974). This model does not 
predict the pulse length dependence of the 
breakdown potential. Zimmermann et al. (1981) 
and Zimmermann and Vienken (1982) have 
pointed out that two effects may contribute to 
this phenomenon: the viscoelastic properties of 
the membrane and the Born effect. While the 
latter effect is important at high potentials and 
very short times, here we confine our exam- 
ination to the influence of membrane viscoelas- 
tic properties on the kinetics of electrical break- 
down. In addition, we also take into consider- 
ation the influence of membrane surface ten- 
sion. 

As originally suggested by Jain, Maldarelli 
and Ruckenstein (1978), the stability of biologi- 
cal membranes can be examined by modelling 
them as thin liquid films. Recently the Jain 
treatment of the dynamics of biological mem- 
branes was extended to include their viscoelas- 
tic properties (Maldarelli & Jain, 1982; Stein- 
chen, Gallez & Sanfeld, 1982). These authors 
used the "body force" approach to incorporate 
long-range intermolecular forces into the equa- 
tions of motion. While interesting from a fun- 
damental theoretical point of view, this ap- 
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proach is difficult to apply to problems where 
the exact form of intermolecu!ar potential is un- 
known. Here, we prefer the disjoining pressure 
approach, in which the effect of intermolecular 
interactions (and other constraints) can be in- 
cluded in the boundary conditions. Recently 
this approach has been successfully used to ex- 
amine the stability of a simple membrane sys- 
tem--a liquid film between two membranes 
(Dimitrov, 1982). Applied rigorously, both ap- 
proaches lead to the same results. 

The basic goal of this work is to explain the 
dependence of breakdown potential on pulse 
duration and physicochemical properties of 
membranes by modelling them as thin visco- 
elastic films. 

The Model 

We consider the membrane as a thin viscoelastic film with 
fluctuating surfaces, bounded by two semi-infinite bulk 
phases (Fig. 1). The basic assumptions are: 

1) The amplitudes of surface shape perturbations ~,~ 
and (~ (subscripts A and B refer to the upper and lower 
surfaces, respectively) are much smaller than the average 
membrane thickness h (~,~.8 4h), i.e., a linear stability anal- 
ysis is used. 

2) The surface shape perturbations can be represented 
as a superposition of surface waves with wave lengths 2. 
much longer than the membrane thickness h. Further on, 
we will omit the index n, knowing that we examine an 
arbitrary surface wave with wave number k and iength 2. 
Thus we use the Reynolds lubrication equations in the 
form (for details see, e.g., the recent review of Dimitrov, 
(1983)) 

~p/Or = c~%j~z (1) 

3p/~z = 0 (2) 

where p is the pressure in the membrane, r and z the ra- 
dial and axial cylindrical coordinates, respectively (the as- 
sumption for axially symmetrical shape perturbations does 
not imply any limitations on the final results; here it is 
used mainly because of the natural axial symmetry of 
most of the biological and model membranes), and %~ the 
r,z component of the stress tensor ~r~k (trek= -p+z~k , i and 
k having the values 1, 2 or 3 when referring to Cartesian 
coordinates xt,  x 2 and x3). 

3) The membrane is an incompressible body, i.e. 

V~u~+~uj~z=O, V,.u,=~?u,./Or +u~/r (3) 

where u and u, are the radial and axial components of the 
displacement vector u~, respectively. 

4) The membrane behaves as a viscoelastic, isotropic 
material, represented as a standard solid model, composed 
of a Kelvin body (with elastic modules G' and viscosity/~') 
in series with a linear spring (with elastic modulus Go) (see 
Fig. 2a). This model is equivalent to the three-element 
model shown in Fig. 2b: a Maxwell fluid (with viscosity /~ 
and elasticity Go) in parallel with a restoring spring (with 

~ A 

B r 

Fig. 1. Sketch of the model. The membrane is represented 
as a thin film, having two different surfaces A and B, fluc- 
tuating with amplitudes -~A,B around planes, placed at an 
average separation h (the average membrane thickness). 
The growth of the surface perturbations can result in a 
local membrane breakage (pore formation). H a and/TB are 
the distances from an arbitrary plane z = 0  to both sur- 
faces (also see Appendix A) 

a b 

Fig. 2. Two viscoelastic models, equivalent to each other, 
used to represent the membrane dynamics: (a) a Kelvin 
body (G~,, #') in series with a spring (G') and (b) a Maxwell 
body (Go, tJ) in parallel with a spring (G) 

elasticity G). As a matter of convenience, further on we 
use only the second modification. 

It can be seen from Fig. 2b that when G o is taken to 
be very large (Go= co) a Kelvin body results (with G, /~); 
when G = 0  the model reduces to the Maxwell one. For 
the three-element viscoelastic model, shown in Fig. 2b, the 
corresponding constitutive equation in cylindrical coor- 
dinates is (see, e.g., the works of Skalak, Schmid-Schon- 
bein and Chien (1982) and Dimitrov (1983)): 

zr~ + (#/S o)'ir~ = G(~ujOz) + #(1 + G/Go)(~v~/Oz) (4) 

where ir~ indicates the time derivative of zr~ and v~ is the 
radial velocity (v,. =fi~). 

5) The pressure p of an interfacially deformed mem- 
brane can be calculated as (for details see, e.g., Dimitrov, 
1983) 

D+IT(~A+~B) m--O~AZJr~A=--GBAr(B; AR=OE./~r (5) 

where /7' denotes the derivative (d/7/dh) of the disjoining 
pressure/7 with respect to membrane thickness h and aA,B 
the tensions of the membrane surfaces. The disjoining 
pressure term takes into account the surface interaction 
forces due to the membrane properties themselves, as well 
as those arising when external constraints are applied. For 
example, if an external electrical field induces a membrane 
potential U, the additional disjoining pressure H~ will be 

/7~1 = - % %  UZ/2h 2 (6) 

where e,, is the relative dielectric constant of the mem- 
brane material and % the permittivity of free space. 

6) Due to surface tension gradients (particularly, aris- 
ing from surface activity species), the tangential com- 
ponents of the surface displacements and their respective 
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velocities are very small and are assumed to be zero (Dimi- 
troy, 1983). Thus 

Ur=O (7) 

at both surfaces. 
The results were calculated based upon these assump- 

tions (see Appendix A) and are shown in the next section. 

Results 

The final result is the relationship between the 
angular  velocity CO (in our case CO has only a 
read part /?)  and the wave number  k 

CO =fl  = - [12G + h 3 k Z ( g k  z - H')]/[12#(1 + G/Go) 

+ kzh 3 k2(ryk 2 - II')/Go] (8) 

where ~ = (T A ~B(O'A -~ GB)- 1. Recall, co is a measure 
of the velocity of growth of the surface shape 
perturbat ions:  ?~-a ~/0t=CO(a ~, respectively, 
(A,B is propor t ional  to exp(COt),'t being the time. 
Hence, when the real part  of co, the growth 
coefficient fl, is greater than unity, /?>0, the 
system is unstable and the membrane  will 
break; in the opposi te  case, f l<0 ,  the mem- 
brane is stable and at/?---0 a marginally stable 
state occurs. The condit ion /?>0 may be satis- 
fied for many  waves, among  them being one or 
several waves with largest growth coefficients 
fla- This wave will break the membrane ,  hence 
it is called the dominan t  wave. The reciprocal 
value of the growth coefficient/?d for the domi- 
nant  wave /72 ~ is a measure of the breaking 
time -c (~/?~-1) for local regions of the mem- 
brane. It is that  t ime which is necessary for the 
surface shape per turbat ion to travel from an ini- 
tial, equil ibrium ampli tude {o to the posi t ion of 
zero local membrane  thickness, thus forming 
pores in the membrane .  

We now follow this idea to present a theory 
as simple as possible for the kinetics of electri- 
cal field-induced membrane  breakdown.  Be- 
cause of the lack of appropria te  experimental 
data (at our  present knowledge) for more  com- 
plicated viscoelastic models,  we will only con- 
sider here in detail the simple case of a Kelvin 
body (G o= co). It is a reasonable representation 
of cell membranes  (Evans & Skalak, 1980). We 
consider a symmetrical  membrane  (o- A = aB=cr). 
In addition, we will assume that  the disjoining 
p ressu re /7  is entirely de termined by the electric 
field-induced membrane  potential  ( H = / / j ,  
i.e., we will use Eq. (6) to express /7'; thus / i t '= 
e,,eo U2/h 3. 

Fol lowing the above assumptions,  Eq. (8) re- 
duces to 

G ~rh 3k ~ e,,e oU2k  2 

c o = f i =  ~ (9) 
# 24# 12# 

The dominant  wave number  k a will be found by 
the condit ion ~?fl/#k=O at k = k  d. Substi tuting 
the dominan t  wave number  thus obtained in 
Eq. (9) and equating the breaking t ime z to fi~- 
(with a constant  of proport ional i ty  c0, we ob- 
tain (see Appendix  B) 

�9 

where the proport ional i ty  factor c~ is of the or- 
der of unity and is calculated to be approxi- 
mately equal to ln(h/2~o), (o being the initial 
shape per turbat ion ampli tude,  due to thermal 
fluctuations or other effects (~o is usually of the 
order of angstroms) (see Appendix  B). 

The very interesting consequences of Eq. 
(10) are: 

l) It predicts a critical potential  

[24~Gh3~ -: 
U = U c =  - ~ at ~=oo.  (11) ! 

At smaller potentials (U < Uc) the breaking t ime 
is negative, i.e., the membrane  is stable, and its 
lifetime is infinity. 

2) With increasing potential  (above the 
critical value Uc) the breaking t ime -c decreases, 
just as observed by experiment. We can present 
this dependence in the following simple, dimen- 
sionless form 

~-- i = L?-4_ I (12) 

and (7 4=  U4/U 4 

E h  2 (13) 
<2 = e,. o 

where we have in t roduced the Young modulus  
E, equal to 3G for incompressible bodies. The 
expression (Eq. (13)) differs from the prediction 
of the electro-mechanical model  (Z immermann  
et al., 1974), where the contr ibut ion of the o- 

where ~- = z/z: = (G/c~ #)'c 
---- gin2 goZ U 4 / 2 4 ~ h 3 "  

At first, we compare  the expression for the 
critical potential  U c with the predictions of pre- 
vious theories (Crowley, 1973; Z i m m e r m a n n  
et al., 1974). For  this purpose it is convenient  to 
rewrite Eq. (11) in another  form 
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, \ \  1 I ( --)- THEORY: 0 =(I + lo-Igr) I/4 
,3 3 1 / ' ~  ~ 2(~ EXP.: LIPID BILAYERS (r~nsTO /~s) 

k,~ ~ 3 ( ~ EXP.: CELL MEMBRANES (T~ns TOFs) 
I~ 2 ~ ~ -  EXP.: LIPID BILAYERS (r-~p.s TO sec) ! 

-2 6__ ' - - - ~ - -  

Fig. 3. Comparison of the theoretical 
prediction for the dependence of the 
dimensionless time of membrane breakdown ~- 
on the dimensionless electric potential [7 
(Eq. (14)) (curve 1) with the experimental data 
of Benz and Zimmermann (1980) (curve 2, 
o - ~ ,  is for cholesterol bilayers at 40~ and 
curve 3, o - -o ,  for cell membranes of 
V.. utricuIaris at 18 ~ C) and those of Abidor 
et al. (1979) for bilayers from general 
phospholipids at 27~ (curve 4, x - - x )  

surface tension was not taken into account, by 
a factor of e(8~r/hE) ~, e being the basis of the 
natural logarithm. It has been noted by Benz 
and Zimmermann (1980) that membranes, ac- 
cording to the electro-mechanical model, have 
to be compressed by about 4 0 ~  to induce 
breakdown. It seems unlikely, especially in the 
case of some lipid bilayers, where a value for E 
as high as 1.4x 108N/m 2 has been reported 
(Alvarez & Latorre, 1978). It is seen fi:om 
Eq. (13) that low critical potentials U c can occur 
due to low surface tension a, even in the case of 
large Young modulus E. Hence, the average 
membrane thickness may not be changed signif- 
icantly, but only the local shape perturbations 
can increase their amplitudes ~, leading to local 
breaking of the membrane and pore formation. 
White (1974) presented a value of 3.72 
x 105 N/m 2 (e,~ = 2.24 and h = 3.5 x 10-9 m) for 

bilayers made from oxidized cholesterol in n-de- 
cane. Membrane surface tension o- is usually 
not measured in breakdown experiments. (It is 
known that it is very sensitive to different sur- 
face active contaminants.) Assuming E of the 
order of l0 s to 108N/m 2 and a in the range 
from 10-2 to 1 raN/m, we obtain that the factor 
e(8a/hE) ~ varies (at h ~ 5  nm) from 10 -2 to 10. 
For example, for bilayers from oxidized choles- 
terol in n-decane (with the data of White (1974) 
cited above) e(20./hE)~=2.14x 10za 4. For this 
system the electro-mechanical model predicts U c 
=0.29 V, but the experimentally measured val- 
ue is 0.40V (Benz & Zimmermann,  1980). Our 
results coincide with the experimentally mea- 
sured value at o-=0.1mN/m, which is a quite 

expected and reasonable value. It follows from 
Eq. (13) that with decreasing surface tension a 
the critical potential decreases. As is now well 
known, surface-active substances strongly desta- 
bilize membranes. In the limiting case of zero 
surface tension, we arrive at a zero critical po- 
tential, where the membrane is unstable. 

In order to compare the theory with the ex- 
perimental data for dependence of potential U 
on time of breaking "c, let's rewrite Eq. (12) in 
another form 

= [1 + 10-(tg~)] �88 (14) 

Figure 3 shows this universal curve (curve i), 
compared with experimental data of Benz and 
Zimmermann (1980) (curve 2, o- - �9  bilayers 
made from oxidized cholesterol in n-decane, at 
40~ in 1 M KC1; and curve 3, o ~ o :  mem- 
branes of cells of the giant alga Valonia utri- 
cularis at 18~ and of Abidor et al. (1979) 
(curve 4, x - - x  : bilayers from general phospho- 
lipids at 27 ~ C). Their data were processed in a 
manner similar to the theoretical curve: the po- 
tential, corresponding to a given experimental 
point (or the average of several points, if there 
is more than one point corresponding to the 
same time), is made dimensionless by using the 
measured critical potential U~ (the potential at 
the longest time). The respective time is also 
made dimensionless with the aid of the charac- 
teristic time ~z (see Eq. (12)). We choose rf  in 
order to fit the experimental data. For the data 
of Abidor et al. (1979) we used two experimen- 
tal points at short times in order to determine 
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the critical potential U c and the characteristic 
time r I. It is seen from Fig. 3 that, while the 
theoretical curve fits the experimental data of 
Benz and Zimmermann (1980) well (excluding 
the divergence at very short times - -  less than 
1 gsec for the lipid bilayers), it coincides with 
the data of Abidor et al. (1979) only for short 
times (short, compared to the other part of the 
curve; the shortest time is 100gsec). The char- 
acteristic times zl, used to fit the experimental 
data, are equal to 3, 31, and 720 gsec for the 
curves 2, 3 and 4, respectively. According to 
Eq. (12) z i =  c~#/G. Here the proportionality fac- 
tor ~=ln(h/2~o) is estimated at h = 3 . 5 n m  and 
2~o=0.5 nm to give e=2 .  Taking G equal to 4 
x 10 s N/m 2 (this is a value presented by White 

(1974), but at 20 ~ C) we obtain for the viscosity 
# of bilayers from cholesterol ('oF=3 gsec) a 
quite reasonable value of 0.6 N sec/m 2. This is 
the order of magnitude of the microviscosity of 
many lipid bilayers (see, e.g., Houslay & Stan- 
ley, 1982). If we suppose that the elasticity mod- 
ulus of the cell membrane of V. utricularis is of 
the same order of magnitude (G = 4 x l0 s N/m2), 
then its viscosity will be ten times greater 
( # = 6 N s e c / m  2) than the viscosity of the 
lipid bilayer, which also is reasonable for the 
more rigid cell membrane. The last value 
('cI~720 ~tsec) was difficult to interpret. It may 
be due to the lower temperature (T=27  ~ C) or 
greater elastic modulus. More likely our theory 
is not applicable to the later stages of mem- 
brane breakdown, where a statistical mecha- 
nism of pore expansion and fusion is operating 
(Abidor et al., 1979; Pastushenko et al., 1979; 
Chizmadzhev et al., 1979). 

Discussion 

We have presented a viscoelastic model of elec- 
tric breakdown of lipid bilayers and cell mem- 
branes, which predicts results in agreement with 
the experimental data of Benz and Zimmer- 
mann (1979). It cannot explain the last stages of 
mechanical breakdown of lipid bilayers as ob- 
served by Abidor et al. (1979), where another 
mechanism is operating (Chizmadzhev, Ara- 
kelyan & Pastushenko, 1979). 

This model is an extension of the electro- 
mechanical model of membrane breakdown 
(Crowley, 1973; Zimmermann et al., 1974), tak- 
ing into account the surface tension and vis- 
cosity of the membrane. For this reason it is 

able to describe two important phenomena: (1) 
the decreasing membrane stability with decreas- 
ing membrane surface tension, and (2) the time 
course of the membrane breakdown. It is now 
well established that the stability of lipid hi- 
layers considerably decreases under the influ- 
ence of surface-active substances. A simple ex- 
planation of this fact can be given, based on 
Eq. (11). It can be seen that the critical poten- 
tial U c is proportional to the surface tension a 
to the power �88 Hence, it is possible, when de- 
creasing the surface tension, to reach the pre- 
existing membrane potential, after which the 
membrane will break. The dependence ( U ~ a  ~) 
is not strong enough to allow very easy mem- 
brane breakdown under the influence of dif- 
ferent surfactant species, but not weak enough 
to prevent it if the surface tension is very low. 

The ability to describe the initial stage of 
membrane breakdown, which is now generally 
accepted to be the formation of pores (in the 
membrane) is very important. The reversible 
membrane breakdown is a rather fast process 
(times usually of the order of 10gsec), which 
was studied (see the excellent reviews of Zim- 
mermann and coworkers (Zimmermann et al., 
1981, Zimmermann & Vienken, 1982)) very ex- 
tensively in recent years using precise experi- 
mental techniques. The pore expansion and fu- 
sion, which leads to the mechanical breakdown 
of the membrane, is a slower process (times of 
the order of 10 to 100gsec and up) (Abidor 
et al., 1979) and can be described by the theory 
of Chizmadzhev and collaborators (1979). As 
can be seen from Fig. 3 (curve 4) our model 
fails to fit the experimental data for large times 
(r above 1 msec). In addition, it predicts a value 
of 0.5 V for the critical potential for this case, 
which is inconsistent with the experimental ob- 
servations. For large potentials, which corre- 
spond to very short times (z smaller than 
100 nsec), the fit between the theory and the ex- 
periment is also poor (see Fig. 3, curves 2 and 
3). As pointed out by Zimmermann et al. (1981) 
and Zimmermann and Vienken (1982) another 
effect, usually due to the ability of individual 
ions to move through the membrane at high 
electric fields, can be significant at high poten- 
tials and short charging times. However, the re- 
sult that the membranes remain in the high 
conductance state for some time after breaking 
cannot be understood using this mechanism, if 
the membrane thickness does not change (Benz 
& Zimmermann, 1980). 

Based on the viscoelastic mechanism present- 
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a b c 

Fig. 4. Possible stages of electric field-induced membrane 
breakdown: (a) growing of the surface shape fluctuations, 
(b) molecular rearrangements, leading to a membrane dis- 
continuity, and (c) pore expansion, which can result in an 
irreversible membrane breakdown 

ed here, it is convenient to divide the process 
of electric field-induced membrane breakdown 
into three stages (see Fig. 4): (1) Growing of the 
membrane shape fluctuations (Fig. 4a), (2) Mo- 
lecular rearrangements leading to a discon- 
tinuity of the membrane (Fig. 4b) and (3) Ex- 
pansion of the pore resulting in the mechanical 
breakdown of the membrane (Fig. 4c). 

The total time of membrane breakage can 
be represented as a sum of the times corre- 
sponding to each stage. The theory presented 
here describes the first stage, and, rigorously 
taken, it is valid up to a local thickness change 
2~ of the order of 0.1 h (linear stability analy- 
sis). However, by analogy to similar phenomena 
well known in the colloid chemistry, as rupture 
of foam, wetting, and emulsion films, and as 
shown by the present calculations, because of 
the small driving force (due to the small thick- 
ness change), the time of growth of the surface 
fluctuation can be rather long (~gsec).  By in- 
creasing the fluctuation amplitude, and respec- 
tively decreasing the membrane thickness, the 
driving force, due to the electrical field, rapidly 
(nonlinearly) increases. This results in fast mo- 
lecular rearrangements,  leading to discontinuity 
of the membrane  (Fig. 4b). Different molecular 
pictures of this process can be imagined, but it 
is still not clarified. One of the reasons is the 
very short duration of this stage. As pointed 
out by Benz and Zimmermann  (1980), the mem- 
brane breakdown itself lasts on the order of na- 
noseconds. 

The last stage can be described by the phe- 
nomenological, statistical theory of Chizmad- 
zhev and coworkers (1979). It usually takes mil- 
liseconds and more. 

Finally, we would like to emphasize on pos- 
sible extensions of the present theory: 

1) This concerns the dynamic properties of 
the membrane material. The general three-ele- 
ment model used in this work can be consid- 
ered in detail when appropriate experimental 
data are available. Another  important  question 

is the mechanical and electrical anisotropy of 
the membrane.  

2) The medium, surrounding the membrane,  
can possess viscoelastic properties. 

3) Short wavelengths can contribute to the 
membrane rupture. 

4) The presence of other membranes (or 
other particles) may significantly change the 
membrane stability. 

5) The influence of external constraints. One 
important  example is osmotic pressure, result- 
ing in an increase of membrane  tension. A 
simple formula for this case is presented in 
Appendix C. 

6) The tangential mobility of membrane 
surfaces. 

Our theoretical and experimental investi- 
gations are now in progress on these questions 
as on others, concerning the fundamental  prob- 
lem of the stability of membrane  systems. 

The useful discussions with Prof. R. Jain and D. Zhelev, as 
well as the helpful remarks of one of the referees, are high- 
ly appreciated. Thanks are due to Ms. S. Mugridge for 
typing the manuscript. This work was supported by grant 
No. INT 8209490 from the National Science Foundation 
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Appendix A 

Derivation of the General Dispersion Equation 
for the Three-Element Viscoelastic Model 

As usually accepted in the linear stability analysis, let us 
assume that all the quantities in Eqs. (1)-(5) can be repre- 
sented as 

P Pf 
Trz Trz 

u~ =u~ r exp(cot) (A1) 
~{z Uzf 

~A ~" SAf 
~B ~Bf 

where p f, t;~, u~f, u~f, (AT and (~. are functions of r and z, 
independent on the time t. The substitution of Eq. (A1) 
into Eqs. (1)-(5) yields 

op f f O r -  o%~f/oz (A2) 

Opf/Oz =0 (A3) 

V~u~i + du~s/gz = 0 (A4) 

(1 + co l~/Go)Lz i = [G + #co(1 + G/Go) ] Ou,i/Oz (A 5) 

pc + 11' ~f = - a A A, ~.af = -- orb A, ~,f  (A 6) 

where we have used the relation .u,=Ou,/Ot=cou, and have 
introduced the total fluctuation amplitude .~,=(a+~B 
((~ = CT exp(cot)). The boundary conditions for u,j~ and Uzl are 

u,f = 0 at z = HA, -- H B (A 7) 

Uzf=CAi,, I at z = H  A, - H  B (A8) 

where we have used Eq. (7) and have introduced the dis- 
tances H A and H B from an arbitrary plane z = 0  to the 
both surfaces (see Fig. 1). The substitution of %:f from 
Eq. (A5) into Eq. (A2), the subsequent integration on z, 
using Eq. (A3) and the boundary conditions (Eq. (A7)) 
leads to an expression for the radial displacement u,. s. The 
substitution of this expression into the continuity equation 
(A4) and the subsequent integration on z, using the 
boundary conditions (Eq. (A8)), yields 

~; = - h 3 A , p / %  7= [G +/~co(1 + G/Go)l/(1 +l~cO/6o). (A9) 

The integration of the second equality in Eq. (A6) on r 
and using the condition for lack of a singularity at r = 0 
and that _~A=(~=0 at the membrane boundaries (r=R,  R 
being the membrane radius) gives 

~f = CAr + ~Bf = ( 1 + ae/aA) ~Bf = (1 + aA/aB) CA f" (A 10) 

The substitution of Eq. (AI0) and of pf from Eq. (A6) into 
Eq. (A9) and using the representation Cf=2~oJo(kr), Co be- 
ing an initial amplitude and Jo(kr)-Bessers function of first 
kind, zero order (Aflo(kr)=-kZJo(kr)), we obtain the 
dispersion equation (8). 

Appendix B 

Derivation of the Expression 
for the Membrane Breakdown Time 

Let us suppose that the membrane will break when the 
two surfaces touch each other, i.e., when 2C=h (for the 
case of symmetrical membranes, where Cra=aB). The 
amplitude if= CA = ~B can be represented as 

= ~o exp(fit), (B l) 

where the part, which depends on the radial coordinate 
r(Jo(kr)), is taken at its maximum value (Jo(0)= 1). Assum- 
ing that the shape perturbation starts to grow from t = 0  
and the breaking occurs when t = z and 2C= h, we obtain 

r = ~/fi, c~ = ln(h/2 r (B2) 

which coincides with that expression, which is used to get 
Eq. (10). 

Another approximate expression for ~ can be ob- 
tained if we take into account that our analysis is linear 
and, consequently, valid for ~/h=z, where e is a small 
number. In addition, let us assume that, because of the 
strong increase of the external or intermolecular forces (H) 
with decreasing the local thickness h - 2 C  (this is a neces- 
sary condition for the membrane breakdown), the time of 
shape perturbation growing at ~/h >e is much smaller than 
the time of the linear growing and therefore can be ne- 
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glected. Then, the time of membrane breaking will be 

-c = . . /A  . .  = ln(e h/2 ~o). (B 3) 

Because of the logarithmic dependence of ~, on a, the pro- 
portionality factor ~ is not significantly affected from 
and for estimates can be used in the form of Eq. (B2). In 
any case, the general rule is that, because of making other 
approximations, ~ is to be taken of the order of unity. 

A p p e n d i x  C 

Effect of  the Membrane Tension 

Let us suppose that the membrane tension T is equivalent 
of acting at an additional pressure equal to T / ( h + ~ ) ,  
where {t=~,~+~B. Then the dynamic pressure p in the 
membrane can be calculated by adding a new term, result- 
ing from the expansion in series with respect to small ~]h: 
T/(h + ~t) - T/h = - T~ jh  2, in Eq. (5) 

p+ FI'~t+ T~ jh  2 = - aAAr~A = - - a B A ~  , .  (ci) 

It can be seen from Eq. (C1) that, in the disjoining 
pressure approach and for the linear stability analysis, the 
influence of the membrane tension is equivalent to an ad- 
ditional "'disjoining pressure" equal to - T / h .  Hence, all 
the formulae obtained in this paper can be extended to 
account for the membrane tension simply by replacing/7'  
with 11'+ T/h 2. For example, the expression for the break- 
ing time under the influence of electrical fields (Eq. (10)) 
will transform to 

"c = c~(#/G)/(~2 a 2 U4/24r~ Gh 3 + Tz/ry Gh - 1). (C2) 

It follows from Eq. (C2) that the increase of the mem- 
brane tension T will result in a decrease of the critical 
potential and the breaking time. In addition, the mem- 
brane can be broken only by the action of the membrane 
tension (at U=0). The preliminary estimates, based on 
Eq. (C2), are in line with the basic experimental obser- 
vations. Now in progress is our experimental and theoreti- 
cal work, where the membrane tension effect will be exam- 
ined in detail, based on a generalization of Eq. (C2) and 
compared with other work on this phenomenon. Particu- 
larly, we will attempt to develop a rigorous theory of 
membrane breakdown under the action of external forces 
which stretch the membrane. 


